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Abstract—Hybrid-mode propagation properties of multilayered ~ that the problem domain must be finite in extent. Actually, the
and multiconductor transmission lines are studied by using an FEM has also been used to analyze multiconductor structures

efficient vector finite element method (FEM) with high-order g1 191 \where full vector magnetic field formulations are
hybrid edge/nodal triangular elements, which can give frequency- ’ ’

dependent propagation constants directly. Characteristic imped- €MPIloyed. In [6] and [9], the triangular elements with second-
ances are also calculated from the FEM field solutions employing order Lagrange interpolation polynomials are used together
a reciprocity-related definition and taking the modal orthogonal-  with the penalty function method. Since the nodal elements
ity into account. The numerical results of a coupled microstrip assign the degrees of freedom to the nodes, they cannot
line are compared with those of the boundary integral equation . . . . .
technique, and good agreement is obtained. Also, a dual-plane properlly model .the S|ngular.|ty occurr.mg at the d'e'e‘?t“c qr
trip|e microstrip line is analyzed_ The approach is found to meta”IC edgeS N the SOIUt'On doma|n Therefore, W|th thIS
be very general and able to simultaneously handle different approach, special treatment is required and also the solution
thicknesse_s and widths of sf[rip CQﬂdUCtQI’S. The erX|b|I|ty of th_e accuracy depends on proper choice of the pena|ty coefficient.
approach is also shown by including anisotropy in the dielectric Recently, different approaches with the FEM are being
substrates of such lines. ' . .
used by many researchers. A revolutionary approach with the
hybrid elements [11]-[15], which are comprised of edge and
l. INTRODUCTION nodal elements has appeared and is leading the simulation of

ECENT microwave integrated circuits exhibit the use dgtlectromagnetics to a new era. With this approach, the edge

various complex waveguiding structures having severglements model the transverse field ensuring tangential conti-
conductors on various layers of dielectric substrates [1]-[1@Juity in the element interfaces and the nodal elements, model
In many cases these transmission lines are asymmetric viftle axial fields; thus the approach ensures the true full-wave
equal or unequal strip widths and/or thicknesses [3], [9)ybrid-mode analysis, which is essential for modeling any
[10]. Especially for very small, i.e., micron-sized structuresnhomogeneous transmission lines such as microstrip lines and
the conductors are very frequently of unequal widths dinlines. As the edge elements assign the degrees of freedom to
thicknesses, even though they apparently look alike withe edges, they allow the field to change its direction abruptly
equal widths or thicknesses. Therefore, the multiconductand thus are capable of modeling the fields properly at sharp
transmission lines should be handled with great care so tlealges where singularity occurs. Thus, the approach does not
any asymmetry can be accounted for in the analysis. In timeed any special treatment of singularities on metal edges.
context, the finite element method (FEM) is a very flexible We have used the FEM approach of [15] to the analysis of
and convenient method. lossless and lossy planar transmission lines [16]-[18]. How-

Heretofore, much work have been done to simulate propagarer, the approach has not been applied yet to multilayered

tion properties of multiconductor transmission lines by usingnd multiconductor transmission lines. In this paper, we have
a quasi-TEM approach [2], [7] and spectral domain methathalyzed the propagation characteristics of multilayered and
(SDM) [1], [3], [5]. Since the microstrip embedded in ammulticonductor transmission lines by using the vector FEM
inhomogeneous medium supports only hybrid modes, fuft5]. In the FEM, a generalized eigenvalue equation gives
wave analyses are required to produce frequency-dependgiliitions for the phase constants and the transverse fields
characteristics. In this regard, the SDM accurately modelgectly. The field solutions are then further processed to
multiconductor coupled microstrip lines. In the SDM, howgalculate the strip current, modal power, and characteristic
ever, advanced information on the geometry of the problemjigpedance.
required because the Green's function depends on it, and th&or a multiconductor transmission line supporting a number
formulation greatly varies with the structural configurationyy modes, a single value of impedance cannot be defined
The FEM, on the other hand, is very general and does not fgscause there exists a number of paths for currents and
quire any assumptions on the geometry of the problem, exCc@gferent potentials on different strips. There must be different
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Fig. 2. High-order hybrid edge/nodal triangular element.

7 X the line as the number of conductors located in the shielding
enclosure. These modes combine together and form the actual
Fig. 1. Cross section of a general multilayered and multiconductor trangalds around the lines. Each actual mode is decoupled from
mission line. ’ . .
all other modes and has a different propagation constant. The
present work will focus on the study of the modal behaviors

, . of the phase constant and the characteristic impedance.
In this paper, we have calculated the total characteristic

impedance and the modal characteristic impedance by us-

ing some basic matrix manipulations on power and current Ill. FORMULATION

matrices following the reciprocity-related definition used by

[4]. Therefore, we have shown an efficient general procedufe Finite Element Method

using the FEM in conjunction with the reciprocity-based The vector FEM with high-order hybrid edge/nodal trian-
definition of impedance to handle an arbitrary configuratiogular elements has been described in detail in [15]. Therefore,
with an arbitrary number of conductors embedded in g8r the sake of brevity we will show only the key steps in
arbitrary number of layers. The treatment is very concise afls paper.

complete and could be useful for many circuit designers in Fig. 2 shows the shape of the high-order hybrid edge/nodal
the microwave community. Numerical results are shown fefiangular element [15], where we use the magnetic field as the
coupled microstrip lines and dual-plane triple microstrip linegyorking variable because it will facilitate the computation of
The results are found to be in good agreement with previouglMrrent on the strip conductors for each mode, as will be shown

published ones. in the following sections. The transverse field components
in each element are expanded using edge-based interpolation
s functions
. STATEMENT OF THE PROBLEM

Fig. 1 shows a general multilayered and multiconductor . 6
transmission line. The structure is uniform and infinitely long. H. = z_: Wil @)
There are a number of homogeneous layers in the dielectric =t
materials, which are assumed to be lossless, and isotropith
and/or anisotropic. Both the conducting and dielectric regions
are assumed to be nonmagnetic. The isotropic material is W, =1;;L;,VL; (39)
characterized by relative permittivity,;, a scalar quantity, Wiz =1L, VL; (3b)
and the anisotropic material by the tensor permittiity;],
for the ith layer, where where W, is the edge-based vector shape function, the sub-

scriptsi and j always progress modulo 3, is the length of
€rai 0 0 the edge between verticésand j, and L; is the area coor-
[eil=1] 0 ey 0 |. (1) dinate associated witith node. The longitudinal component
0 0 is expanded using the conventional nodal-based interpolation
) __functions

The strips are assumed to be perfect conductors with infi-
nite conductivity. These conductors could be very thin or 6
sufficiently thick with different widths and are embedded H., ZENZHA (4)

in different layers, or in the interface between layers. As
shown in Fig. 1,z is the propagation direction and for allwhereN; is the nodal-based shape function ftr node. The
field components in such a structure, we assume time antkerpolating functions for the shape functions are detailed in
longitudinal dependence as“*=7) with w and/3 being the [15].

angular frequency and the phase constant, respectively. Ther&he boundary value problem in the full-wave analysis of an
exists as many distinct fundamental modes propagating immomogeneously dielectric-filled waveguide is defined by the
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vector wave equation derived from Maxwell's equations ~ where {V*} and {I*} are arbitrary total voltage vector and

total current vector, respectively, due to a superposition of all
Vx([ei] 'V xH)—k2H=0 in Q (5) the modes on each of the lines. They are obtained from

[V] and [I], such that{I*} = [I]{A} and {V'} = [V]{A}.

where kg is the free space wave number, afiddenotes The componentd! and V;} of {I*} and {V'}, respectively,

the cross section of the structure whose boundary is coare the total arbitrary current and voltage éth line. The

posed of perfect electric and/or magnetic walls. The boundaagmponentsd,, of { A} are the coefficients for modein the

conditions required for thdd formulation are homogeneousmodal expansion. Therefore, the total characteristic impedance

Dirichlet conditions on perfect magnetic conductors (PMC’shatrix will be given by

and homogeneous Neumann conditions on perfect electric

conductors (PEC's). Thus [z = V][]~ (10)
nx H=0 onPMC (6a) where[I]~! is the inverse matrix off]. Following the relation
nx ([e] 'V x H) =0 on PEC (6b) [Z[]¥[V] = [P], the total characteristic impedance matrix
becomes
where n is the unit vector normal to the surface of the
conductors. (2] = (")~ e (11)

Applying the finite element technique to (5) and (6), we

obtain a generalized matrix eigenvalue problem : . . .
g g P where [P] is a diagonal matrix and each diagonal element,

Py, is the propagating power for thigh mode, and’ denotes
A|{H,} = B[ Bl{H 7) kK o :
[A{H: ) = GBI H: ) O a transpose. Thus, the total characteristic impedance relating
the voltage ofith line to the current onyth line Z}; can be

where{H.} is the column vector for the edge variables of th : : . .
alculated from (11), doing some manipulations on matrices

whole problem domain which will give the tangential magneti .
fields, and/A] and[B] are the finite element matrices and ar ] a}nd 'EhP ]IktThhe rgod;lncharaclterlitlc |mp|edanlce| c;f ctim?l'h
obtained after some matrix manipulations. The descriptions gie for the mode, z;;, can aiso be easily calcu’ated. ihe
their elements are detailed in [15]. The axial fields may also pdal charactensth impedance COUld. be useful fgr studying
calculated from the transverse fields [16], [18]. All the FEI\}i € nature of hybrid-mode propagation on multiconductor

field solutions will be employed to produce power and Currerins_rn'_SS!on line systems [6]. On the other h_and_, tota_l char-
matrices. acteristic impedance could be useful for the circuit designers,

who are always concerned with the equivalent circuits and the
characteristic terminations.

B. Characteristic Impedance C. Calculation of Current and Power

In multiconductor systems with. conductors (except the In this subsection, we see how the axial current and the

ground conductor); fundamental modes which are orthogonal ropagating power can be calculated using the FEM field

to each other can propaga_lte alon_g_ the Ion_gltudmal direct sno'lutions. For evaluating the axial current 4th conductor
Each fundamental mode is specified by its phase constrfm . ,

oI a given modek, we use Ampere’s law as

and the overall power transported along the total conductor
configuration. For such a configuration there can be two

types of characteristic impedances—the total characteristic Lix = jgc Hy - dl (12)

impedance and the modal characteristic impedance [4]-[6].

Through the FEM field solutions, the current matfi} can \yhere the integration contow; is taken to be a path around
be constructed, each element of which is the axial cufgnt the surface of theth strip. To evaluate the integral, only the
on :th line for a given modek. Thus, for ann conductor (gngential fields on the strip surface are required [16].

system, a complete set of currents will be defined by, am The propagating power for the orthogonal modes is de-
matrix [I]. An n xn voltage matriX{V'] can also be constructedgcriped by the Poynting vector as

with components/j;,, if modal characteristic impedance!};
is assumed to exist, such that .
Py bppr = [Ex x (Hy)"] -z dx dy (13)
Q
Vik = Zi L. (8)

where E, is the electric field, the asterisk denotes complex
Thus, the modal characteristic impedance is defined by tbenjugate, and the Kronecker delig,, = 0 if £ # &’ and
ratio of voltage to current on a line for a given mode. Thé&, = 1 if £ = &’. Using Maxwell's equations and the FEM
total characteristic impedance is determined in the matrix forrocedure, we can evaluate the power as

[Z*], given by
Br

— & T
v = 12901 © P = gy W11 Hu 14
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Fig. 4. Normalized propagation constants versus frequency for the coupled 0.4 0.6 0.8 1.0 1.2
microstrip line. koh

whereey is the permittivity of free space. The dagger denotesy. 6. Modal characteristic impedances for the coupled microstrip line.
complex conjugate and transpose. Hgsgis exactly the same

as that which appeared in the eigenvalue problem (7). ThusFigs. 5 and 6 show the total characteristic impedance and

the modal power can be easily calculated using the FEM,qa| characteristic impedance versus frequency, respectively.
technique. Even though our results do not agree very well with the
results calculated by [6], we can see a like tendency of the
curves. From our results we can see that the total characteristic
First, we consider a very simple case of a multiconductanpedance satisfies the reciprocity relation, &, = 73,
transmission line, i.e., a lossless shielded coupled microstdpd also we find thaZ!;, = Zi,. The symmetry offZ'] is
line shown in Fig. 3. For the structure, = 10 mm, h = indicative of the reciprocal nature of the transmission lines
1.0 mm, b = 4.0 mm, and the relative permittivity of the and the fact thaiZ!] is real is a consequence of the lossless
substrateg, = 4.0. The strips are assumed to be very thiapproach to the analysis taken here. It is also found that all
and their widths aré?; = W, = 2.0 mm, and the separationmodal impedances are positive. Because of the symmetry of
between the strip§ = 1.0 mm. The dispersion curves forthe structure, both lines have the same modal impedaiite
the normalized propagation constant is shown in Fig. 4. Nor mode k; thus, Z7} = Zj} (mode 1) andZ{5 = Z3}
assumptions of symmetry is imposed for this structure. Tligmode 2). The reasons for the discrepancy may be due to the
verification is made by comparing our results with those dfisufficient number of elements in the calculations and/or their
vector finite element method (VFEM) and SDM reported bgesults are for the microstrip configuration with strip thickness
[6]. The two modes corresponding to the usual even and odeglected to zero.
modes are shown by solid lines, and the results calculated byrhe next example is a dual-plane triple microstrip line
[6] are shown by dotted lines and circles. We can see that almown in Fig. 7. This structure has been analyzed by [8] and
results are in better agreement with the SDM results than §8, where the thickness of the strips are neglected. In our
VFEM results of [6]. case, we assumed a finite strip thickness, and other parameters

IV. NUMERICAL RESULTS



ALAM et al. ANALYSIS OF MULTILAYERED AND MULTICONDUCTOR TRANSMISSION LINES 209

S 100
b1 75 ;
T
1521 w W, __.- 50 r
ey | 5
:r-ll"l'-! F 2 ;— 25

Fig. 7. Cross section of a dual-plane triple microstrip line.

KN
o 1
L e e e LR

-25 ,
35 R tl:tzzt,}z().l mm
: mode 1 So bt b e e L
- 0 5 10 (5 20 25 30
Frequency (GHz)
3.0 d (@)
C 2000 ¢
= i r
= ; 1500 |
25 [ r
t,=t,=t.=1.0 um 1000 C
I t =t =t =0.1 mm F
: 17273 @ 500 TN Ye——
X ) T R N N A BT "4 oF
N N 7z m
0 5 10 15 20 25 30 r 22
Frequency (GHz) 500 \ [l:t2:t3:1.0 um
Fig. 8. Normalized propagation constants versus frequency for the _joo0 =V = —---- t =t =t =0.1 mm
dual-plane triple microstrip line. N 23
_1500:....1....1....1.1..1”“1....
120 ¢ 0 5 10 15 20 25 30
i t,=t,=t,=1.0 pm Frequency (GHz)
100 r o----- t1:t2:t3:0.1 mm (b)
[ Fig. 10. Modal characteristic impedances for the dual-plane triple microstrip
80 -~ line. () 211, 215, 215, 233, Z31. Z35, and Zg;. (b) Z3] and Z35.
? 60 - — = are shown in the figure, where both layers are anisotropic
N i sapphire substrates with the dielectric permittivity,; =
40 [ Gm;_g I €rzl I 67?2 = 9.4 and Eryl = 67wy_2 = 11.6. 'I_'he
- solid lines with circles and the dashed lines with triangles
i show the results of two cases; = ¢t = t3 = 1.0 um
20 - andt; = t2 = t3 = 0.1 mm, respectively. We can see
i DEI that thickness affects the propagation constants of mode 1
0 b e L P L at lower frequencies, and of modes 2 and 3 over the whole
0 5 10 15 20 25 30 frequency range, where mode 3 is greatly affected. Also,

Frequency (GHz) the propagation constants show increasing dispersion behavior
Fig. 9. Total characteristic impedances for the dual-plane triple microstrYMIth the increase in fregu_ency. .
line. The total characteristic impedances of the dual-plane triple
microstrip line are shown in Fig. 9. The numerical results
area = 10.0 mm, by = b, = 1.0 mm, b3 = 4.0 mm, the imply that the total characteristic impedance matrix follows
strip widths W, = Wy, = W3 = 1.0 mm, and the separationsymmetric nature ag}, = Z%;, Zi, = Z%,, and Z%, = Z%,.
between the strips on the lower plarfe = 2.0 mm. No Here, we can see that the reciprocity relation, igj,: ij
assumptions of symmetry are used in this case. is also satisfied. The same symmetry in the impedance matrix
Fig. 8 shows the normalized propagation constant versias also been assumed in many analyses of three coupled
frequency for the example of Fig. 7. Three distinct modesicrostrip lines located in the same plane [20], [21].
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the dual-plane triple microstrip line at 5 GHz.

The modal characteristic impedances are shown in Fig. 16!
We have found in the calculations thaf;, 253, 274, and 253
show negative values at certain frequency range (below 10
GHz). For this case, thickness affects the impedance valuF]
Since the modal impedance is nothing but the ratio of voltage
to current in one conductor for a given mode, so it could
be negative depending on voltage or current of any oné!
if negative. We plotted the longitudinal current distributions
along the bottom surfaces of the three strips at 5 GHz anidl
found some negative currents as shown in Fig. 11. As a matter
of fact, negative impedances are also reported in [6] and [22]0]

In the above calculations, we used approximately 350 hybrid
edge/nodal triangular elements. The corresponding size [¢f;
eigenvalue matrix equation follows about 1200 and required
memory is about 30 megabytes. Time required to obtain PZ]
propagation constant at a given frequency is about 40 min Bn
a NEWS-5000 UA workstation with a speed of 100 MIPS. [13]

From the above numerical results of propagation constants
and characteristic impedances, it can be seen that the FEM
approach is efficient enough to model multiconductor trans-
mission lines and that the thickness, even if it is very smaﬁl,
should be carefully considered in the analysis. Note, however,
that the analysis applies to any nonsymmetric multiple str'wﬁ]
configuration as well.

V. CONCLUSION (17]

The FEM with high-order hybrid edge/nodal triangular
elements has been used for the analysis of general multilayered
and multiconductor transmission lines. It has been shown thizg]
the FEM approach can be used to generate field solutions for
all the modes, which are orthogonal to each other. Propagating)
power, current flow, and characteristic impedance are also
calculated from the FEM field solutions. For multiconductor
transmission lines it has been found feasible to calculaigy
two types of characteristic impedances: total characteristic
impedance and modal characteristic impedance, where t
can be easily produced by using elementary matrix trans-
formations on current and power matrices. Our computation
also includes inhomogeneous and anisotropic materials. 1?%24
approach can be extended to the analysis of more complex

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 2, FEBRUARY 1997

structures with stratified media, including bi-isotropic or gy-
rotropic materials.
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