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Abstract—Hybrid-mode propagation properties of multilayered
and multiconductor transmission lines are studied by using an
efficient vector finite element method (FEM) with high-order
hybrid edge/nodal triangular elements, which can give frequency-
dependent propagation constants directly. Characteristic imped-
ances are also calculated from the FEM field solutions employing
a reciprocity-related definition and taking the modal orthogonal-
ity into account. The numerical results of a coupled microstrip
line are compared with those of the boundary integral equation
technique, and good agreement is obtained. Also, a dual-plane
triple microstrip line is analyzed. The approach is found to
be very general and able to simultaneously handle different
thicknesses and widths of strip conductors. The flexibility of the
approach is also shown by including anisotropy in the dielectric
substrates of such lines.

I. INTRODUCTION

RECENT microwave integrated circuits exhibit the use of
various complex waveguiding structures having several

conductors on various layers of dielectric substrates [1]–[10].
In many cases these transmission lines are asymmetric with
equal or unequal strip widths and/or thicknesses [3], [5],
[10]. Especially for very small, i.e., micron-sized structures,
the conductors are very frequently of unequal widths or
thicknesses, even though they apparently look alike with
equal widths or thicknesses. Therefore, the multiconductor
transmission lines should be handled with great care so that
any asymmetry can be accounted for in the analysis. In this
context, the finite element method (FEM) is a very flexible
and convenient method.

Heretofore, much work have been done to simulate propaga-
tion properties of multiconductor transmission lines by using
a quasi-TEM approach [2], [7] and spectral domain method
(SDM) [1], [3], [5]. Since the microstrip embedded in an
inhomogeneous medium supports only hybrid modes, full-
wave analyses are required to produce frequency-dependent
characteristics. In this regard, the SDM accurately models
multiconductor coupled microstrip lines. In the SDM, how-
ever, advanced information on the geometry of the problem is
required because the Green’s function depends on it, and the
formulation greatly varies with the structural configuration.
The FEM, on the other hand, is very general and does not re-
quire any assumptions on the geometry of the problem, except
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that the problem domain must be finite in extent. Actually, the
FEM has also been used to analyze multiconductor structures
[6], [9], where full vector magnetic field formulations are
employed. In [6] and [9], the triangular elements with second-
order Lagrange interpolation polynomials are used together
with the penalty function method. Since the nodal elements
assign the degrees of freedom to the nodes, they cannot
properly model the singularity occurring at the dielectric or
metallic edges in the solution domain. Therefore, with this
approach, special treatment is required and also the solution
accuracy depends on proper choice of the penalty coefficient.

Recently, different approaches with the FEM are being
used by many researchers. A revolutionary approach with the
hybrid elements [11]–[15], which are comprised of edge and
nodal elements has appeared and is leading the simulation of
electromagnetics to a new era. With this approach, the edge
elements model the transverse field ensuring tangential conti-
nuity in the element interfaces and the nodal elements, model
the axial fields; thus the approach ensures the true full-wave
hybrid-mode analysis, which is essential for modeling any
inhomogeneous transmission lines such as microstrip lines and
finlines. As the edge elements assign the degrees of freedom to
the edges, they allow the field to change its direction abruptly
and thus are capable of modeling the fields properly at sharp
edges where singularity occurs. Thus, the approach does not
need any special treatment of singularities on metal edges.

We have used the FEM approach of [15] to the analysis of
lossless and lossy planar transmission lines [16]–[18]. How-
ever, the approach has not been applied yet to multilayered
and multiconductor transmission lines. In this paper, we have
analyzed the propagation characteristics of multilayered and
multiconductor transmission lines by using the vector FEM
[15]. In the FEM, a generalized eigenvalue equation gives
solutions for the phase constants and the transverse fields
directly. The field solutions are then further processed to
calculate the strip current, modal power, and characteristic
impedance.

For a multiconductor transmission line supporting a number
of modes, a single value of impedance cannot be defined
because there exists a number of paths for currents and
different potentials on different strips. There must be different
voltages and currents in each conductor for different modes,
giving rise to voltage and current matrices, whose size depends
on the number of conductors (except the ground conductor)
in the transmission line. So, it is necessary to use matrix
manipulations and, hence, to produce an impedance matrix.
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Fig. 1. Cross section of a general multilayered and multiconductor trans-
mission line.

In this paper, we have calculated the total characteristic
impedance and the modal characteristic impedance by us-
ing some basic matrix manipulations on power and current
matrices following the reciprocity-related definition used by
[4]. Therefore, we have shown an efficient general procedure
using the FEM in conjunction with the reciprocity-based
definition of impedance to handle an arbitrary configuration
with an arbitrary number of conductors embedded in an
arbitrary number of layers. The treatment is very concise and
complete and could be useful for many circuit designers in
the microwave community. Numerical results are shown for
coupled microstrip lines and dual-plane triple microstrip lines.
The results are found to be in good agreement with previously
published ones.

II. STATEMENT OF THE PROBLEM

Fig. 1 shows a general multilayered and multiconductor
transmission line. The structure is uniform and infinitely long.
There are a number of homogeneous layers in the dielectric
materials, which are assumed to be lossless, and isotropic
and/or anisotropic. Both the conducting and dielectric regions
are assumed to be nonmagnetic. The isotropic material is
characterized by relative permittivity , a scalar quantity,
and the anisotropic material by the tensor permittivity ,
for the th layer, where

(1)

The strips are assumed to be perfect conductors with infi-
nite conductivity. These conductors could be very thin or
sufficiently thick with different widths and are embedded
in different layers, or in the interface between layers. As
shown in Fig. 1, is the propagation direction and for all
field components in such a structure, we assume time and
longitudinal dependence as with and being the
angular frequency and the phase constant, respectively. There
exists as many distinct fundamental modes propagating on

Fig. 2. High-order hybrid edge/nodal triangular element.

the line as the number of conductors located in the shielding
enclosure. These modes combine together and form the actual
fields around the lines. Each actual mode is decoupled from
all other modes and has a different propagation constant. The
present work will focus on the study of the modal behaviors
of the phase constant and the characteristic impedance.

III. FORMULATION

A. Finite Element Method

The vector FEM with high-order hybrid edge/nodal trian-
gular elements has been described in detail in [15]. Therefore,
for the sake of brevity we will show only the key steps in
this paper.

Fig. 2 shows the shape of the high-order hybrid edge/nodal
triangular element [15], where we use the magnetic field as the
working variable because it will facilitate the computation of
current on the strip conductors for each mode, as will be shown
in the following sections. The transverse field components
in each element are expanded using edge-based interpolation
functions

(2)

with

(3a)

(3b)

where is the edge-based vector shape function, the sub-
scripts and always progress modulo 3, is the length of
the edge between verticesand , and is the area coor-
dinate associated withth node. The longitudinal component
is expanded using the conventional nodal-based interpolation
functions

(4)

where is the nodal-based shape function forth node. The
interpolating functions for the shape functions are detailed in
[15].

The boundary value problem in the full-wave analysis of an
inhomogeneously dielectric-filled waveguide is defined by the
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vector wave equation derived from Maxwell’s equations

in (5)

where is the free space wave number, and denotes
the cross section of the structure whose boundary is com-
posed of perfect electric and/or magnetic walls. The boundary
conditions required for the formulation are homogeneous
Dirichlet conditions on perfect magnetic conductors (PMC’s)
and homogeneous Neumann conditions on perfect electric
conductors (PEC’s). Thus

on PMC (6a)

on PEC (6b)

where is the unit vector normal to the surface of the
conductors.

Applying the finite element technique to (5) and (6), we
obtain a generalized matrix eigenvalue problem

(7)

where is the column vector for the edge variables of the
whole problem domain which will give the tangential magnetic
fields, and and are the finite element matrices and are
obtained after some matrix manipulations. The descriptions of
their elements are detailed in [15]. The axial fields may also be
calculated from the transverse fields [16], [18]. All the FEM
field solutions will be employed to produce power and current
matrices.

B. Characteristic Impedance

In multiconductor systems with conductors (except the
ground conductor), fundamental modes which are orthogonal
to each other can propagate along the longitudinal direction.
Each fundamental mode is specified by its phase constant
and the overall power transported along the total conductor
configuration. For such a configuration there can be two
types of characteristic impedances—the total characteristic
impedance and the modal characteristic impedance [4]–[6].
Through the FEM field solutions, the current matrix can
be constructed, each element of which is the axial current
on th line for a given mode . Thus, for an conductor
system, a complete set of currents will be defined by an
matrix . An voltage matrix can also be constructed
with components , if modal characteristic impedance
is assumed to exist, such that

(8)

Thus, the modal characteristic impedance is defined by the
ratio of voltage to current on a line for a given mode. The
total characteristic impedance is determined in the matrix form,

, given by

(9)

where and are arbitrary total voltage vector and
total current vector, respectively, due to a superposition of all
the modes on each of the lines. They are obtained from

and , such that and .
The components and of and , respectively,
are the total arbitrary current and voltage onth line. The
components of are the coefficients for mode in the
modal expansion. Therefore, the total characteristic impedance
matrix will be given by

(10)

where is the inverse matrix of . Following the relation
, the total characteristic impedance matrix

becomes

(11)

where is a diagonal matrix and each diagonal element,
is the propagating power for theth mode, and denotes

a transpose. Thus, the total characteristic impedance relating
the voltage of th line to the current on th line can be
calculated from (11), doing some manipulations on matrices

and . The modal characteristic impedance of theth
line for the th mode, can also be easily calculated. The
modal characteristic impedance could be useful for studying
the nature of hybrid-mode propagation on multiconductor
transmission line systems [6]. On the other hand, total char-
acteristic impedance could be useful for the circuit designers,
who are always concerned with the equivalent circuits and the
characteristic terminations.

C. Calculation of Current and Power

In this subsection, we see how the axial current and the
propagating power can be calculated using the FEM field
solutions. For evaluating the axial current inth conductor
for a given mode , we use Ampere’s law as

(12)

where the integration contour is taken to be a path around
the surface of theth strip. To evaluate the integral, only the
tangential fields on the strip surface are required [16].

The propagating power for the orthogonal modes is de-
scribed by the Poynting vector as

(13)

where is the electric field, the asterisk denotes complex
conjugate, and the Kronecker delta if and

if . Using Maxwell’s equations and the FEM
procedure, we can evaluate the power as

(14)
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Fig. 3. Cross section of a lossless shielded coupled microstrip line.

Fig. 4. Normalized propagation constants versus frequency for the coupled
microstrip line.

where is the permittivity of free space. The dagger denotes
complex conjugate and transpose. Hereis exactly the same
as that which appeared in the eigenvalue problem (7). Thus,
the modal power can be easily calculated using the FEM
technique.

IV. NUMERICAL RESULTS

First, we consider a very simple case of a multiconductor
transmission line, i.e., a lossless shielded coupled microstrip
line shown in Fig. 3. For the structure, mm,

mm, mm, and the relative permittivity of the
substrate, . The strips are assumed to be very thin
and their widths are mm, and the separation
between the strips mm. The dispersion curves for
the normalized propagation constant is shown in Fig. 4. No
assumptions of symmetry is imposed for this structure. The
verification is made by comparing our results with those of
vector finite element method (VFEM) and SDM reported by
[6]. The two modes corresponding to the usual even and odd
modes are shown by solid lines, and the results calculated by
[6] are shown by dotted lines and circles. We can see that our
results are in better agreement with the SDM results than the
VFEM results of [6].

Fig. 5. Total characteristic impedances for the coupled microstrip line.

Fig. 6. Modal characteristic impedances for the coupled microstrip line.

Figs. 5 and 6 show the total characteristic impedance and
modal characteristic impedance versus frequency, respectively.
Even though our results do not agree very well with the
results calculated by [6], we can see a like tendency of the
curves. From our results we can see that the total characteristic
impedance satisfies the reciprocity relation, i.e., ,
and also we find that . The symmetry of is
indicative of the reciprocal nature of the transmission lines
and the fact that is real is a consequence of the lossless
approach to the analysis taken here. It is also found that all
modal impedances are positive. Because of the symmetry of
the structure, both lines have the same modal impedance
for mode ; thus, (mode 1) and
(mode 2). The reasons for the discrepancy may be due to the
insufficient number of elements in the calculations and/or their
results are for the microstrip configuration with strip thickness
neglected to zero.

The next example is a dual-plane triple microstrip line
shown in Fig. 7. This structure has been analyzed by [8] and
[9], where the thickness of the strips are neglected. In our
case, we assumed a finite strip thickness, and other parameters
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Fig. 7. Cross section of a dual-plane triple microstrip line.

Fig. 8. Normalized propagation constants versus frequency for the
dual-plane triple microstrip line.

Fig. 9. Total characteristic impedances for the dual-plane triple microstrip
line.

are mm, mm, mm, the
strip widths mm, and the separation
between the strips on the lower plane mm. No
assumptions of symmetry are used in this case.

Fig. 8 shows the normalized propagation constant versus
frequency for the example of Fig. 7. Three distinct modes

(a)

(b)

Fig. 10. Modal characteristic impedances for the dual-plane triple microstrip
line. (a)Zm

11
; Zm

12
; Zm

13
; Zm

23
; Zm

31
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32
, andZm

33
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21
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22
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are shown in the figure, where both layers are anisotropic
sapphire substrates with the dielectric permittivity

and . The
solid lines with circles and the dashed lines with triangles
show the results of two cases: m
and mm, respectively. We can see
that thickness affects the propagation constants of mode 1
at lower frequencies, and of modes 2 and 3 over the whole
frequency range, where mode 3 is greatly affected. Also,
the propagation constants show increasing dispersion behavior
with the increase in frequency.

The total characteristic impedances of the dual-plane triple
microstrip line are shown in Fig. 9. The numerical results
imply that the total characteristic impedance matrix follows
symmetric nature as , and .
Here, we can see that the reciprocity relation, i.e.,
is also satisfied. The same symmetry in the impedance matrix
has also been assumed in many analyses of three coupled
microstrip lines located in the same plane [20], [21].
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Fig. 11. Current distributions on the bottom surfaces of the three strips of
the dual-plane triple microstrip line at 5 GHz.

The modal characteristic impedances are shown in Fig. 10.
We have found in the calculations that , and
show negative values at certain frequency range (below 10
GHz). For this case, thickness affects the impedance value.
Since the modal impedance is nothing but the ratio of voltage
to current in one conductor for a given mode, so it could
be negative depending on voltage or current of any one
if negative. We plotted the longitudinal current distributions
along the bottom surfaces of the three strips at 5 GHz and
found some negative currents as shown in Fig. 11. As a matter
of fact, negative impedances are also reported in [6] and [22].

In the above calculations, we used approximately 350 hybrid
edge/nodal triangular elements. The corresponding size of
eigenvalue matrix equation follows about 1200 and required
memory is about 30 megabytes. Time required to obtain a
propagation constant at a given frequency is about 40 min on
a NEWS-5000 UA workstation with a speed of 100 MIPS.

From the above numerical results of propagation constants
and characteristic impedances, it can be seen that the FEM
approach is efficient enough to model multiconductor trans-
mission lines and that the thickness, even if it is very small,
should be carefully considered in the analysis. Note, however,
that the analysis applies to any nonsymmetric multiple strip
configuration as well.

V. CONCLUSION

The FEM with high-order hybrid edge/nodal triangular
elements has been used for the analysis of general multilayered
and multiconductor transmission lines. It has been shown that
the FEM approach can be used to generate field solutions for
all the modes, which are orthogonal to each other. Propagating
power, current flow, and characteristic impedance are also
calculated from the FEM field solutions. For multiconductor
transmission lines it has been found feasible to calculate
two types of characteristic impedances: total characteristic
impedance and modal characteristic impedance, where they
can be easily produced by using elementary matrix trans-
formations on current and power matrices. Our computation
also includes inhomogeneous and anisotropic materials. The
approach can be extended to the analysis of more complex

structures with stratified media, including bi-isotropic or gy-
rotropic materials.
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